Hospital Staff Cuts and its impact on hospital cleaning

Source: Pixabay

Healthcare-associated infections (HAIs) are one of the biggest risks in healthcare today and Canada is no exception to this. In fact, Canada has one of the highest occurrences of HAIs out of all developed nations, with 200,000 cases per year and consequently, 8000 deaths (Statistics Canada, 2016). The spread of HAIs can be prevented, as we have seen on this blog, with proper handwashing techniques as well as proper disinfection protocols for equipment and patient rooms. The problem is that hospitals need A LOT of staff in order to properly disinfect, and control and prevent infection. And yet, Canada, as well as other countries, are seeing cuts in hospital staff.

According to a report prepared by Venrock (2018), one of the predictions for trends in healthcare for 2018 was the continuation of cutting and hiring less hospital staff. This is mostly due to hospitals working to balance their budgets. But at what costs does this balancing of budgets come at?

Although not a recent report, CBC’s Marketplace investigation of hospital cleanliness from 2012 does a good job at showing the consequences of hospital staff cuts (see video below). They interviewed nurses, doctors and hospital cleaners to find out more about staff cuts and its relation to infection control.

One hospital cleaner described the following:

“They’ve really cut staff, and we don’t have a lot of time to actually get done what we’re supposed to get done in a day. We used to have one person to one wing of the hospital to clean, but now we have three floors to clean.”

Anonymous, Hospital Cleaner (2012)

According to the report, in order to sufficiently clean a hospital room, it would take just over an hour. However, with the staff cuts being made, hospital cleaners are only getting on average 15 minutes for each room. This leads to a lot of uncleaned surfaces, leaving harmful pathogens in patient rooms. Furthermore, sometimes the harmful bacteria will even be spread from one room to another, since cleaners either don’t have the time to change cleaning materials or there aren’t enough cleaning materials. One example given in the report is that a cleaner will mop a patient’s room and then continue mopping into another room with the same water, simply because they don’t have the time to change the water.

Hospital staff cuts may save hospitals money, however, the potential risks that result from staff cuts are very significant and should not be overlooked. Leaving surfaces infected by pathogens can be detrimental to both patients and staff, and that is why it is essential to have an adequate number of educated staff to control the spread of infection.

To learn more about the consequences of hospital staff cuts, refer to this CBC Marketplace video:

Sources:

https://www.youtube.com/watch?v=UIOHKrfzJzI

https://www.cnbc.com/2017/11/27/venrocks-health-investors-make-predictions-for-2018.html

https://www.cbc.ca/news/canada/sudbury/health-sciences-north-funding-meeting-1.4902836

Is Ultraviolet disinfection the new technology for reducing the risk of hospital-acquired infections?

According to a study published in the American Journal of Infection Control, the use of ultraviolet (UV) disinfection technology in an operating room eliminated up to 97.7% of pathogens (infectious agent), which otherwise could have caused hospital-acquired infections. The UV light technology that was used is by PurpleSun, a New York based company. PurpleSun’s UV technology can reach and clean multiple surfaces in several seconds, compared to traditional disinfecting methods which use chemicals and does not eliminate bacteria as well. Traditional methods also take longer, since it is normally humans cleaning with a disinfectant.

Source: Wikimedia Commons

What is ultraviolet disinfection?

Ultraviolet disinfection is the use of UV light to disinfect. UV light is absorbed by the DNA and RNA of microorganisms, which in turn causes changes in the structure of the DNA and RNA. This makes the microorganisms incapable of replicating. According to Bolton (2008), “because they cannot multiply, they cannot cause disease, even though technically they are still metabolically alive.” Ultraviolet disinfection is more commonly used for the disinfection of water, however, it may soon become an effective method to eliminate bacteria causing hospital-acquired infections.

PurpleSun: pioneer in ultraviolet disinfection technologies?

PurpleSun is a New York based company, and is set to be the first company to launch ultraviolet-based technology as a disinfectant. Their mission, as stated on their website, is to reduce hospital-acquired infections, in order to save lives, reduce costs, and enhance safety in healthcare facilities.

On their website, they have identified 3 limitations with hospitals’ current disinfection process:
1) Everything is done by hand
2) There are thousands of surfaces, and not enough time to clean them all
3) There is no room for human error

PurpleSun’s light disinfectant will allow rooms to be cleaned within seconds, disinfect all the surfaces in the room and has been proven to be very effective in eliminating harmful pathogens.

Is ultraviolet technology the next step that healthcare facilities must take to reduce the risk of HAIs?

Light technology as a disinfectant is still in the process of experimentation in healthcare facilities. That being said, the study conducted produced highly favorable results. PurpleSun as a company has also been doing extremely well on a global scale, being named one of the 50 most promising companies in the world. Furthermore, many firms and organizations have been investing in and partnering with the company, demonstrating that the company has a lot of potential. The effectiveness of ultraviolet light as a disinfectant is undeniable, but for now, we will just have to wait and see what the future holds for it in healthcare facilities.

Sources:

https://www.infectioncontroltoday.com/environmental-hygiene/study-says-ultraviolet-disinfection-977-effective-eliminating-pathogens

https://purplesun.com/

Bolton, James R. Cotton, Christine A.. (2008). Ultraviolet Disinfection Handbook (1st Edition). American Water Works Association (AWWA) . Retrieved from:
https://app.knovel.com/hotlink/toc/id:kpUDHE0001/ultraviolet-disinfection/ultraviolet-disinfection


Hospital Privacy Curtains: A Harbour for Infectious Agents

Source: Wikimedia Commons

On this blog, we have already reviewed many of the sources of a major health problem: hospital-acquired infections (HAIs). And yet, every day, researchers seem to discover new sources of HAIs. One of the latest discoveries is that hospital privacy curtains in hospital rooms are extremely contaminated with pathogens. A study conducted in Winnipeg, Canada, revealed that freshly hung hospital curtains with minimal contamination became more contaminated each day that they hung in the hospital rooms. Furthermore, after 14 days of being in the room, 87.5% of the curtains were tested positive for methicillin-resistant Staphylococcus aureus (MRSA).

Kevin Shek (Bsc), the leader of the study on hospital privacy curtains carrying pathogens, writes,

“We know that privacy curtains pose a high risk for cross-contamination because they are frequently touched but infrequently changed.”

Kevin Shek (2018)

Healthcare facilities have been placing a great amount of effort in reducing the risk of HAIs in terms of hand-washing and the cleaning of equipment and high-touch surfaces, however, other things such as curtains, mattresses, and bedsheets have often been overlooked. A survey that was conducted to determine how hospital privacy curtains are cleaned/changed revealed frightening results. Only about half of the hospitals had a written policy which specified how often the curtains needed to be changed. 37% of respondents answered that hospital curtains were changed only when visibly soiled. 13% of respondents answered that the curtains were changed only once per year. Considering the results obtained from the Winnipeg hospital study, where curtains became increasingly more contaminated with each day that they remain in a patient’s room, the responses from the survey are alarming.

In terms of controlling the spread of infection, hospitals really need to consider that almost anything in the facility could be contaminated. Hospital cleaning is becoming increasingly complicated, as there are so many places where harmful pathogens can be found. It will be increasingly important that healthcare facilities develop new protocols and policies to prevent HAIs.

Sources:

https://www.infectioncontroltoday.com/transmission-prevention/new-study-says-hospital-privacy-curtains-may-harbor-infectious-pathogens

https://www.infectioncontroltoday.com/transmission-prevention/hospital-privacy-curtains-and-bed-sheets-soft-surface-contamination-and

Hospital floors, yet another source of Hospital-Acquired Infections

The list of potential areas of contamination in hospitals seems to keep growing, leading us to identify more sources of hospital-acquired infections (HAIs) and making hospital cleaning continuously more complicated. To add to this, researchers are now finding that hospital floors are a significant source of hospital-acquired infections. Every day, hospital and clinic floors are flooded by thousands of people. Shoes soles, wheels from equipment, such as monitors or stretchers and bodily fluids all contribute to the contamination of hospital floors.

It seems so obvious; floors are dirty in general. Hospital floors must be even dirtier. However, as Koganti, et. al. (2016) describes,

“… hospital floors are often heavily contaminated but are not considered an important source for pathogen dissemination because they are rarely touched. However, floors are frequently contacted by objects that are subsequently touched by hands (e.g., shoes, socks, slippers). In addition, it is not uncommon for high-touch objects such as call buttons and blood pressure cuffs to be in contact with the floor.”

(Koganti, et. al. (2016).

In addition to this, shoe soles and wheels on equipment also frequently touch hospital floors. Shoes of healthcare professionals can lead to the spread of infection since these workers are visiting many different patient rooms. Similarly, equipment such as monitors, stretchers or infusion pumps all have wheels which touch the floors of multiple hospital rooms.

Now you might be thinking, ‘but surely hospital floors are routinely cleaned?’ While that is true, researchers are now finding that much of the floor cleaning that is done is relatively ineffective since the bacteria is able to reproduce so quickly. So, what can be done to help reduce the risk of hospital floor contamination?

A good hygiene program for hospital floors, to reduce the risk of contamination

The cleaning and the disinfection of floors are essential elements of an effective hygiene program for hospitals. Regular floor maintenance implies the systematic elimination of hidden bacterias, which can be achieved by using vacuums, mopping and other elimination processes.

A good floor disinfection program consists of using effective disinfectants/detergents and procedures that are notable for reducing the risk of contamination. It is also important that cleaning equipment be properly cleaned and maintained, so that bacteria doesn’t spread when cleaning.

Cleaning hospital floors seems like a daunting task, especially since bacteria has been able to reproduce and spread itself so quickly. Healthcare facilities will need to become more exigent with their floor cleaning programs, if they are going to seriously tackle the threat of hospital-acquired infections.

Source : 
https://www.infectioncontroltoday.com/environmental-hygiene/shoe-sole-and-floor-contamination-new-consideration-environmental-hygiene

Water, a source of hospital-acquired infections?

Hospital-acquired infections are a serious threat in healthcare facilities today and researchers keep finding new sources of these infections. We know that sources of HAIs include surfaces, high-touch objects, hands and medical devices, but did you know that these infections can also occur due to the water and plumbing systems in healthcare facilities?

Source: Public Domain Pictures

According to Infection Control Today (2018), “Potable and utility water systems in healthcare settings are reservoirs and vectors of Hospital-acquired infections, resulting in pneumonias, bacteremias, skin infections, surgical site infections, eye infections and others.”

Hospitals are major users of potable water, whether it be for drinking, bathing, hand-washing or rinsing medical devices. It is therefore important that healthcare facilities realize that the water entering their facilities is not considered sterile.

Why is the water in plumbing systems infected? The design of and water use patterns in premise plumbing creates biofilms, which provide shelter and food for harmful bacterias. According to Infection Control Today (2018), “Biofilms in premise plumbing systems are complex ecosystems, and it is within these biofilms that bacteria, fungi and amoeba find the food, water and shelter they need.” Many bacteria develop in the biofilms, such as Legionella, Ancinetobacter aumanniii, Aspergillus flavus, etc.

Legionella – what is it and how does it affect patients in a healthcare setting?

Legionella colonies

Hospital-acquired infections

       Source: Wikimedia Commons

Legionella is one example of a bacteria that is found naturally in water. This bacteria is known for causing Legionnaires’ disease: a severe form of pneumonia. This disease is one of the most significant waterborne infections. Legionnaires normally has a mortality rate of only 10%, however, if acquired in a hospital, this rate goes up to anywhere between 25-50% (Infection Control Today, 2018)! Hospitals experience the highest number of outbreaks of Legionnaires disease (compared to other types of buildings) due to having a large number of patients with weakened immune systems or that have chronic diseases. It is important to note that the majority of Legionnaires cases in hospitals are due to the drinking water system.

How to reduce the risk of wHAIs: education and water management programs

So now that we are aware of waterborne hospital acquired infections (wHAIs), is there a way to reduce the risk that potable water poses to healthcare facilities? Infection Control Today (2018) suggests both education and water management programs as possible solutions to reducing the wHAI risk. Firstly, through education, it is important that healthcare workers know that potable water does carry bacteria and does cause an increase in HAIs. Second, once this idea of water carrying bacteria is understood, it will be important to implement water management programs. There can be no standardized water management programs, as all facilities differ in factors such as age of establishment and system, overall design of plumbing system, populations served, etc. Some hospitals have already tried different methods of water disinfection. Examples of these methods used to reduce risk include the use of sterile water in high-risk patient areas, engineering controls and point-of-use water filters.

To summarize, healthcare facilities must realize the risk that water and plumbing systems pose to their patients and employees. Hospital-acquired infections are one of the leading causes of death in North America and it is therefore crucial that hospitals take action against any source that could spread these infections. Education and water management programs are the best ways to help reduce the risk of wHAIs, according to Infection Control Today (2018).

Learn more about Hospital-acquired infections in this free webinar

Source: Infection Control Today. Vol. 22. No. 2. February 2018. 

Medical hygiene monitoring badges: how new technology is helping to prevent the spread of microorganisms

Hygiene and cleanliness are already monitored closely in hospitals and healthcare facilities. Hand sanitation is a crucial hygiene practice for both medical professionals’ well-being, as well as their patients. However, according to TrendHunter (2014), hand hygiene compliance in US hospitals is only achieved 50% of the time. And this is only an example of hand hygiene in the US. Studies would probably show similar, if not worse, percentages in countries across the globe. That is why Biovigil invented a medical hygiene monitoring badge.

Source: Pixabay

The Biovigil monitoring badge is specifically made for hand sanitation. The badge can be clipped on to a scrub or lab coat. It reminds healthcare workers to clean their hands when they leave or enter a patient’s room. It also works by telling either healthcare professionals or patients if their hands have been properly sanitized by turning green when the worker places their hand over the monitor. The badge also collects data on hand sanitation and sends it to be analyzed. While these badges are not heavily used yet, they could prove to be very efficient in eliminating the spread of hospital-aqcuired infections.

It is not, then, unreasonable to ask what other sort of technology could be developed in order to better monitor hygiene and sanitation in healthcare facilities. With the technological resources we have today, it is highly possible to create new products such as this. For now, most hygiene monitoring technologies revolve around hand sanitation. But as we’ve seen in other posts, there are way more sources of contamination and spread of bacteria than just hands; hospital bed mattresses, marked medical instruments, surface damages on medical equipment, etc. Why not create a technology that monitors the hygiene of these things as well? Similarly to the hand sanitation monitor, there could be monitors for other medical equipments that alert healthcare cleaners to check if they are clean and safe to use.

 

Source: https://www.trendhunter.com/trends/biovigil

An enzyme to destroy biofilms

One can not stop the progress. The discovery of an enzyme capable of preventing the production of a biofilm, this polymeric protective layer produced by bacteria that prevents antibiotics and surface disinfectants from functioning well, could ultimately revolutionize the fight against nosocomial infections.

perturbation-biofilm

The team at the McGill University Health Center, which includes Dr. Donald C. Sheppard, has published a study in the journal Proceedings of the National Academy of Sciences (PNAS). Their hope is that this technology will be the subject of human clinical trials in Canada within 5 years and be used in hospitals within 10 years.

From the abstract:

We demonstrate that glycoside hydrolases derived from the opportunistic fungus Aspergillus fumigatus and Gram-negative bacterium Pseudomonas aeruginosa can be exploited to disrupt preformed fungal biofilms and reduce virulence.

What is a biofilm?

My colleague Rémi Charlebois described biofilms as follows:

Biofilms found on surfaces are often derived from a complex colony of microorganisms producing polymers that allow them to adhere better to the surface and facilitate colony life. In short, a biofilm is like a city for microbes. Man has learned to tame these biofilms and can use them to treat wastewater or produce certain molecules such as natural plastics. However, the presence of unwanted biofilms could be harmful and can lead to infections.

Biofilms are also found on the skin and medical devices. Thus, according to the article of Le Devoir:

Biofilms, a highly sticky matrix of proteins and sugar polymers made by bacteria to protect themselves, are attached to the skin, mucous membranes or the surface of biomedical materials, including catheters, tubing, heart valves and other prostheses Which become preferred entry points for infection.

In the same article, Dr. Sheppard quotes:

Biofilms are produced by molecules that defend against our immune system or against antibiotics with this shell that is 1000 times more resistant than the organisms that produce and proliferate in these biofilms.

An enzyme that acts as a “destructive machine” for biofilms

In short, the enzyme discovered was modified to destroy the biofilms instead of forming them. This is a new strategy that can reduce nosocomial infections in healthcare centers.

Watch this video about biofilms (25 minutes, french)

Sources:

http://www.ledevoir.com/societe/sante/501939/des-chercheurs-percent-le-secret-de-la-resistance-de-certaines-bacteries

http://www.lapresse.ca/sciences/medecine/201706/27/01-5111114-avancee-majeure-contre-les-infections-dans-les-hopitaux.php

Free Webinar: Fighting Healthcare Associated Infection with Environmental Hygiene

Fighting Healthcare Associated Infection with Environmental Hygiene.


The main objective of this webinar is to review the basics of cleaning and disinfection:

  • The updated burden of HAI’s in Canada
  • Why do we disinfect
  • Best practices in cleaning and disinfection
  • Using the right product
  • Validation technique

This 40 minutes long webinar was originally broadcast on December 15th, 2016. Watch it now on replay for a limited time!

Invitation Free Webinar: Fighting Healthcare Associated Infection with Environmental Hygiene

webinar-topfree-webinar-left2

I would like to invite you to a free webinar on


Fighting Healthcare Associated Infection with Environmental Hygiene.


I will present this webinar on December 15th, 2016 at 12:00 PM EST. (45 minutes long)

The main objective of this webinar will be to review the basics of cleaning and disinfection :

  • The updated burden of HAI’s in Canada
  • Why do we disinfect
  • Best practices in cleaning and disinfection
  • Using the right product
  • Validation technique

Practical information:

  • The webinar will take place on Thursday, December 15th, 2016 at 12:00 PM EST (Toronto Time)
  • Make sure you have a computer accessible with an internet connection
  • The webinar is 100% free without any engagement
  • We will take question after the webinar

SUBSCRIBE NOW

Clorox bleach wipes destroy C. difficile in five minutes!

 

2013-01-29-CloroxBot

10% of admitted patient will contract an HAI

The ministry of Health and Social Services estimates that in Quebec, between 80 000 and 90 000 hospitalized patients will present a nosocomial infection, which represents 10% of admitted patients. In addition to the measures suggested in the action plan on prevention and control of nosocomial infections 2010-2015, healthcare centers can count on an effective cleaning product: Clorox bleach disinfecting wipes.

Clorox Bleach Wipes are pre-humidified

Since March 2011, Clorox bleach wipes are effective for killing the spores of C. difficile after a contact time of 5 minutes. The wipes are pre-humidified with a stable solution of sodium hypochlorite diluted at 1:10, that is the recommended concentration by the American Centers of Disease Control and Prevention (CDC). They are also homologated for the destruction of 31 other pathogen agents in one minute.

clorox-bleach-disinfecting-wipes