The complete guide to hospital cleaning

hospital-cleaning

For a long time, cleaning has been all about the look; fresh smell and the absence of stains or dirt were the criteria to determine that a place is clean. Today, these criteria are still generally accepted in environments such as offices and classrooms.

It’s common knowledge, however, that microbes (bacteria or viruses) invisible to the human eye represent a risk for spreading infections. Take the example of the influenza virus: it can survive for up to 48 hours on a hard surface!

Without cleaning and disinfection procedures or a quality check procedure, microbes can survive in hospital environments.

Three key elements have to be considered in order to perform an infective risk analysis:

  • Is the patient carrying a disease agent? Disease agents are classified based on their spreading capacity and their virulence. The choice of a disinfectant will be based on this.
  • Do the functional activities of a sector represent a risk of spreading infections from the environment? E.g.: food service, offices, Intensive Care, etc.
  • The intensity of contact is related to the traffic and the surfaces that are more likely to be touched. E.g.: bathroom fittings.

Infective Risk Analysis

Cleaning in hospitals allows reducing risks of infection among patients. This is not the only factor, of course: good personal hygiene habits such as washing hands and the use of protective equipment such as overalls, gloves, masks, or protective glasses are also important elements.

For this reason, interventions must be well coordinated in order to have a good surface maintenance plan. The manager of hygiene and cleanliness should therefore take into account:

  • The type of place associated to the level of risk
  • The tasks to perform
  • The required cleaning frequency

If well applied, a detailed estimate allows validating the cleaning performance.

The global approach is going to be determined by type of place:

  • Regular eradication (e.g.: operating rooms)
  • Keeping environmental effects as light as possible (e.g.: low infection risk such as individual office spaces)
  • Balance of microorganisms. This approach is based on the competition between good and bad microbes. The presence of good microbes guarantees less space for bad microbes to grow (e.g.: living environments)
  • Green cleaning. Approach that uses less toxic products
  • Review and improve arrangements and/or surfaces (during conception or renovation)

The Cleaning Staff: key to success

The hygiene and cleanliness staff represents a key element in the fight against infections in hospital environments. Often little valued, their role in the global strategy of surface cleaning is extremely important.

The hygiene that comes from the work of the cleaning staff requires a high performance level. In order to reach that, the executing staff and the managers need to master all the different elements representing this profession.

Cleaning products and equipment are undeniably crucial in order to ensure performance during the environment asepsis of any establishment. Therefore, it is important to associate the day-to-day actions of the cleaning staff with a range of products and equipment that favor the quality of their performance.

Since several years, partly due to the devotion and the involvement of many members in the healthcare system, we take into consideration new factors:

  • Provincial training
  • Establishment of an AEP hygiene and cleanliness in healthcare environments of 630 hours now offered by many school boards
  • Provincial day of hygiene and cleanliness
  • Etc.

Having said this, the hygiene and cleanliness staff deserves our deepest gratitude. Thank you so much!

Work Organization

How can proper work organization contribute to the cleanliness of a hospital? How to be in the right place with the right equipment? Here are the questions we are going to answer in this post of the Cleaning in Hospitals series.

Evaluation of production needs

First, we need to assess the needs in hygiene and cleanliness. In order to do this, a standard evaluation is preferable but it needs to be adjusted based on the type of place, units, and traffic.

It is during the evaluation of needs that the hygiene and cleanliness estimate (see Cleaning in Hospitals part 2) is going to be determined. All daily, weekly, monthly, and annual tasks have to be considered.

Usually, the results are presented by production yields (square meters/hour) or FTE (Full Time Equivalent).

How to reduce time waste

How to measure productivity in a context where an important aspect of the task is moving? Actually, hygiene and cleanliness departments are almost always in the basement, whereas most of their work happens on the floors!

We increase productivity by reducing traveling.

It is for this reason that the cleaning cart needs to be as complete as possible and the water sources or janitor’s closets well stocked with supplies (i.e.: paper products or waste bags), equipment, and sanitary products.

Moreover, it is important to remember that a good entrance carpet can greatly reduce dirt.

Have a successful day!

Here are a few hints on how to have a successful day:

  • Establish a sequence of actions to perform in a day/week/month
  • Define a sequential order of rooms
  • Integrate linked and periodical tasks (monthly)
  • Make sure to have time gaps to focus on periodical tasks (dusting of high surfaces, polishing, etc.)
  • Minimize traveling
  • Work by space and not by task
  • Distribute tasks equitably
  • One look is worth a thousand words: choose a colorful plan together with some graphics instead of a list of tasks on a word file!

Want to know more?

Look this free webinar from my collegue Remi:

Need help?

Don’t hesitate to call 514.645.2753 or subscribe to one of our training seminars. I really hope that you liked this post!

An enzyme to destroy biofilms

One can not stop the progress. The discovery of an enzyme capable of preventing the production of a biofilm, this polymeric protective layer produced by bacteria that prevents antibiotics and surface disinfectants from functioning well, could ultimately revolutionize the fight against nosocomial infections.

perturbation-biofilm

The team at the McGill University Health Center, which includes Dr. Donald C. Sheppard, has published a study in the journal Proceedings of the National Academy of Sciences (PNAS). Their hope is that this technology will be the subject of human clinical trials in Canada within 5 years and be used in hospitals within 10 years.

From the abstract:

We demonstrate that glycoside hydrolases derived from the opportunistic fungus Aspergillus fumigatus and Gram-negative bacterium Pseudomonas aeruginosa can be exploited to disrupt preformed fungal biofilms and reduce virulence.

What is a biofilm?

My colleague Rémi Charlebois described biofilms as follows:

Biofilms found on surfaces are often derived from a complex colony of microorganisms producing polymers that allow them to adhere better to the surface and facilitate colony life. In short, a biofilm is like a city for microbes. Man has learned to tame these biofilms and can use them to treat wastewater or produce certain molecules such as natural plastics. However, the presence of unwanted biofilms could be harmful and can lead to infections.

Biofilms are also found on the skin and medical devices. Thus, according to the article of Le Devoir:

Biofilms, a highly sticky matrix of proteins and sugar polymers made by bacteria to protect themselves, are attached to the skin, mucous membranes or the surface of biomedical materials, including catheters, tubing, heart valves and other prostheses Which become preferred entry points for infection.

In the same article, Dr. Sheppard quotes:

Biofilms are produced by molecules that defend against our immune system or against antibiotics with this shell that is 1000 times more resistant than the organisms that produce and proliferate in these biofilms.

An enzyme that acts as a “destructive machine” for biofilms

In short, the enzyme discovered was modified to destroy the biofilms instead of forming them. This is a new strategy that can reduce nosocomial infections in healthcare centers.

Watch this video about biofilms (25 minutes, french)

Sources:

http://www.ledevoir.com/societe/sante/501939/des-chercheurs-percent-le-secret-de-la-resistance-de-certaines-bacteries

http://www.lapresse.ca/sciences/medecine/201706/27/01-5111114-avancee-majeure-contre-les-infections-dans-les-hopitaux.php